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UNIT I 

INTRODUCTION: The finite element analysis is a numerical technique. In this method allthe complexities 

of the problems, like varying shape, boundary conditions and loads are maintained as they are but the 

solutions obtained are approximate. The fast improvements in computer hardware technology and slashing 

of cost of computers have boosted this method, since the computer is the basic need for the application of 

this method. A number of popular brand of finite element analysis packages are now available commercially 

Some of the popular packages are STAAD-PRO, GT-STRUDEL, NASTRAN, NISA and ANSYS. Using 

these packages one can analyze several complex structures. 

The finite element analysis originated as a method of stress analysis in the design of aircrafts. It started as an 

extension of matrix method of structural analysis. Today this method is used not only for the analysis in 

solid mechanics, but even in the analysis of fluid flow, heat transfer, electric and magnetic fields and many 

others. Civil engineers use this method extensively for the analysis of beams, space frames, plates, shells, 

folded plates, foundations, rock mechanics problems and seepage analysis of fluid through porous media. 

Both static and dynamic problems can be handled by finite element analysis. This method is used extensively 

for the analysis and design of ships, aircrafts, space crafts, electric motors and heat engines 

The basic unknowns or the Field variables which are encountered in the engineering problems are 

displacements in solid mechanics, velocities in fluid mechanics, electric and magnetic potentials in electrical 

engineering and temperatures in heat flow problems In a continuum, these unknowns are infinite. The finite 

element procedure reduces such unknowns to a finite number by dividing the solution region into small 

parts called elements and by expressing the unknown field variables in terms of assumed approximating 

functions (Interpolating functions/Shape functions) within each element. The approximating functions are 

defined in terms of field variables of specified points called nodes or nodal points. Thus in the finite 

element analysis the unknowns are the field variables of the nodal points. Once these are found the field 

variables at any point can be found by using interpolation functions. After selecting elements and nodal 

unknowns next step in finite element analysis is to assemble element properties for each element. For 

example, in solid mechanics, we have to find the force-displacement i.e. stiffness characteristics of each 

individual element. Mathematically this relationship is of the form 

[k]e {δ}e = {F}e 

where [k]e is element stiffness matrix, {δ }e is nodal displacement vector of the element and {F}e is nodal 

force vector. The element of stiffness matrix kij represent the force in coordinate direction ‘i’ due to a unit 
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displacement in coordinate direction ‘j’. Four methods are available for formulating these element properties 
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viz. direct approach, variational approach, weighted residual approach and energy balance approach. Any 

one of these methods can be used for assembling element properties. In solid mechanics variational 

approach is commonly employed to assemble stiffness matrix and nodal force vector (consistant loads). 

Element properties are used to assemble global properties/structure properties to get system equations [k] 

{u} = {F}. Then the boundary conditions are imposed. The solution of these simultaneous equations give 

the nodal unknowns. Using these nodal values additional calculations are made to get the required values 

e.g. stresses, strains, moments, etc. in solid mechanics problems. 
 
 

Thus the various steps involved in the finite element analysis are: 

(i) Select suitable field variables and the elements. 

(ii) Discritise the continua. 

(iii) Select interpolation functions. 

(iv) Find the element properties. 

(v) Assemble element properties to get global properties. 

(vi) Impose the boundary conditions. 

(vii) Solve the system equations to get the nodal unknowns. 

(viii) Make the additional calculations to get the required values. 
 
 

Methods of Engineering Analysis 

There are three methods are adopted for analyzing the product 

1.Experimental methods 

2.Analytical methods 

Numerical methods 

Experimental methods 

In these methods the actual products or their proto type models or atleast their material specimen are tested 

by using some equipments 

Ex: UTM, Rockwell hardness tester 

Analytical methods 

These methods are theoretically analyzing methods. Only simple and regular shaped products like beams, 

shafts, plates can be analyzed by these methods 
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Numerical methods 

For the products of complicated sizes and shapes with complicated material properties and boundary 

conditions getting solution using analytical methods is highly difficult. In such situation the numerical 

method can be employed 

There are three numerical methods 

i)Functional approximating methods 

ii) Finite element method 

iii) Finite difference method 
 
 

Application of FEM 
 

 
S.No Area of Study Analysing problem 

1 Civil Engineering structures Analysis of trusses, folded plates, shell roofs, bridges and 

prestressed concrete structures 

2 Aircraft structures Analysis of aircraft wings, fins, rockets, space craft and 

missile structures 

3 Mechanical Design Stress analysis of   pressure vessels, pistons, composite 

materials,Linkages and gears 

4 Heat Conduction Temperature distribution in solida and fluids 

5 Hydraulic and water resources 

Engineering 

Analysis of potential flows,free suface fkows,viscous 

flows,analysis of hydraulic structures and dams 

6 Electrical Machines and 

Electromagnetic 

Analysis of synchronous and induction machines eddy current 

and core losses in electric machines 

7 Nuclear Engineering Analysis of   nuclear pressure vessels and containment 

structures 

8 Geomechanics Stress analysis in soils,dams,layered piles and machine 

foundations 

 

Advantages and disadvantages of FEM 

Advantages 

Using FEM we are able to 
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1.model irregular shaped bodies quite easily 

2.handle general load conditions without difficulty 
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3. model bodies composed of several different materials because the element equations are evaluated 

individually 

4. handle unlimited numbers and kinds of boundary conditions 

5. vary the size of the element to make it possible to use small elements 

6. alter the finite element model easily and cheaply 

7. include dynamic effects 

Disadvantages 

1. The finite element method is time consuming process 

2. FEM cannot produce exact results as those of analytical methods 
 
 

Equations of Equilibrium for 3D Body 
 

Typical three dimensional element of size dx × dy × dz. Face abcd may be called as negative face of x and 

the face efgh as the positive face of x since the x value for face abcd is less than that for the face efgh. 

Similarly the face aehd is negative face of y and bfgc is positive face of y. Negative and 

positive faces of z are dhgc and aefb. The direct stresses σ and shearing stresses τ acting on the negative 

faces are shown in the Fig. with suitable subscript. It may be noted that the first subscript of shearing stress 

is the plane and the second subscript is the direction. Thus the τ xy means shearing stress on the plane where 

x value is constant and y is the direction. 
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Let the intensity of body forces acting on the element in x, y, z directions be X, Y and Z respectively as 

shown in Fig The intensity of body forces are uniform over entire body. Hence the total body force in x, 

y, z direction on the element shown are given by 

(i) X dx dy dz in x – direction 

(ii) Y dx dy dz in y – direction and 

(iii) Z dx dy dz in z – direction 
 

 
Equations of Equilibrium 
Considering all forces are acting we can write the equilibrium equations for the element 

 
 

Simplifying and dividing throughout by dx dy dz 
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Similarly Fy=0 and Fz=0 Equilibrium conditions give 

Mx=0 

   \ 
 

Neglecting small quantity then 
zy= yz 

 
My=0 then we will get 
xz= zx 

 
MZ=0 then we will get 
xy= yx 

[]
T=[x y z xy yz xz] 

and the equilibrium equations are 
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Strain Displacement equations 
 

Taking displacement components in x, y ,z directions as u, v, and w respectively, the relations among 
components of strain and the components of displacement are 

 

 

strains are expressed up to the accuracy of second order (quadratic) changes in displacements. These 

equations may be simplified to the first (linear) order accuracy only by dropping the second order changes 

terms. Then linear strain – displacement relation is given by: 
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LINEAR CONSTITUTIVE EQUATIONS 
 

The constitutive law expresses the relationship among stresses and strains. In theory of elasticity, usually it 

is considered as linear. In one dimensional stress analysis, the linear constitutive law is stress is proportional 

to strain and the constant of proportionality is called Young’s modulus. It is very well known as Hooke’s 

law. 

The similar relation is expressed among the six components of stresses and strains and is called 

‘Generalized Hookes Law”. This may be stated as: 

 
 

where D is 6 × 6 matrix of constants of elasticity to be determined by experimental investigations for each 

material. As D is symmetric matrix [Dij = Dji], there are 21 material properties for linear elastic 

Anisotropic Materials. Certain materials exhibit symmetry with respect to planes within the body. Such 

materials are called Ortho tropic materials. Hence for orthotropic materials, the number of material 

constants reduce to 9 as shown below: 
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Note that there are 12 material properties in above equations However only nine of these are independent 

because the following relations exist 

 
 

For Isotropic Materials the above set of equations are further simplified. An isotropic material is the one 

that has same material property in all directions. In other word for isotropic materials, 

 
 

 

Hence for a three dimensional problem, the strain stress relation for isotropic material is, 
 

 
 



15  

PLANE STRESS PROBLEM 

The thin plates subject to forces in their plane only, fall under this category of the problems. Fig. shows a 

typical plane stress problem. In this, there is 
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PLANE STRAIN PROBLEM 

 
A long body subject to significant lateral forces but very little longitudinal forces falls under this category of 

problems. Examples of such problems are pipes, long strip footings, retaining walls, gravity dams, tunnels, 

etc. In these problems, except for a small distance at the ends, state of stress is represented by 

any small longitudinal strip. The displacement in longitudinal direction (z-direction) is zero in typical strip. 

Hence the strain components, 
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Functional Approximation Methods 

The nature of the problems for which the solutions to be found out are 
 

i) Equilibrium problems 

ii)Eigen value problems 

iii)probagation problems 

The functional approximation methods for solving the above types of problems are classified in to major 
types 

i) Variational methods 

ii)Weighted residual methods 
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Rayleigh-Ritz method is good example for variational method 

Weighted residual method 

 Point collocation method 
 sub domain collocation method 

 Least square method 
 Galerkin's method 

Rayleigh-Ritz Method 

Rayleigh -Ritz method is a typical variational method in which principle of integral approach is adopted for 
solving the complex structural problems 

i) Minimum potential energy method 

ii)Integral approach method 

Minimum potential energy method 

In this method the total potential energy '' is considered as the function of generalized coordinated which 
are exactly equal to the number of degrees of freedom 

 

= U-W 

U=Internal energy 
 

W=work done by the external force 

Polynomial series 

y(x)=a1+a2x+a3x2+ --------------------- 

a1, a2, a3 ---------------- are Ritz parameters 
 

Integral approach method 

Differential equation is 

D 𝑑2𝑦+Q=0 
𝑑𝑥2 

 

I∫
𝑙 
[𝐷/2(𝑑𝑦/𝑑𝑥)𝟐-Qy ] dx 
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ONE DIMENSIONAL PROBLEMS 

Bar and beam elements are considered as One Dimensional elements. These elements are often used to 
model trusses and frame structures 

 

Types of Loading 
i) Body force (f) 

It is a distributed force acting on every elemental volume of the body. Unit is Force / Unit volume. Ex: Self 
weight due to gravity. 

ii) Traction (T) 

It is a distributed force acting on the surface of the body. Unit is Force / Unit area. But for one dimensional 
problem, unit is Force / Unit length. Ex: Frictional resistance, viscous drag and Surface shear. 

iii) Point load (P) 

It is a force acting at a particular point which causes displacement. 
 

Finite Element Modeling 
It has two processes. (1) Discretization of structure (2) Numbering of nodes. 

 
 

 
 

CO – ORDINATES 
(A) Global co – ordinates, (B) Local co – ordinates and (C) Natural co – ordinates. 

 

 Equation of Stiffness Matrix for One dimensional bar element 
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For a stepped bar loaded as shown in figure.Determine a) Nodal displacements 
 

b) support Reactions c)Element Sress 
 
 

 
 

Solution 
 

 

Element 1 Element 2 Element 3 
A1= 15 cm2 A2= 15 cm2 A3= 24 cm2 

E1= 20 X 106 N/cm2 E2= 20 X 106 N/cm2 E3= 20 X 106 N/cm2 
L1= 75 cm L2= 75 cm L3= 60 cm 

α 1= 11 X 10 -6 cm/cm0C α 2= 11 X 10 -6 cm/cm0C α 3= 11 X 10 -6 cm/cm0C 

∆T = 10 0C ∆T = 10 0C ∆T = 10 0C 

 

F0(1)= A1 E1α 1∆T=33000 N 

F0(2)= A2 E2α 2∆T=33000 N 

F0(3)= A3 E3α 3∆T=52800 N 

The Nodal Forces are 

F1=R1+P- F0(1)= R1-33000 

F2=P2 + F0(1) - F0(2) = 10000 

F3=P3 + F0(2) - F0(3)= - 39800 

F4= R4 + P3 + F0(2) - F0(3) = R4 + 52800 
 

The stiffness values are 
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k1=A1E1/L1=4 X 106 N/cm 
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k2=A2E2/L2=4 X 106 N/cm 

k3=A3E3/L3=8X 106 N/cm 

the nodal conditions are u1=0 and u4=0 
 

solve the above matrix then you will get the values of u2 and u3 as - 3.48 X 10-3 cm and as - 0.49 X 10-1 cm 

R1 = 34960 N 

R4 = - 24960 N 
 

r(1) =  (1)-   2
 

0(1) = -2330.7 N/cm 
 

r(2) =  (2)-   2
 

0(2) = -2997.3 N/cm 
 

r(3) =  (3)-   2
 

0(3) = -1010 N/cm 
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Two Dimensional Trusses 

UNIT II 

Figure shows a typical plane truss. The truss may be statically determinate or indeterminate. In the analysis 
all joints are assumed pin connected and all loads act at joints only. These assumptions result into no bending 
of any member. All members are subjected to only direct stresses–tensile or compressive. Now we are 
interested to see the finite element analysis procedure for such trusses 

 
 
 
 
 
 
 
 
 
 
 
Step 1: Field Variables and Elements 
Joint displacements are selected as basic field variables. Since there is no bending of the members, we have to 
ensure only displacement continuity (Co-continuity) and there is no need to worry about slope continuity 
(C1continuity). Hence we select two noded bar elements for the analysis of trusses. Since the members are 

subjected to only axial forces, the displacements are only in the axial directions of the members. Therefore the 

nodal variable vector for the typical bar element shown in Fig 

 
 
 

where δ’1, δ’2are in the axial directions of the element. But the axial direction is not same for all members. 
If we select x-y as global coordinate system, there are two displacement components at every node. Hence the 

nodal variable vector for a typical element is, 
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Step 6: Boundary Conditions 
If hand calculations are made usually elimination approach is used and if computers are used penalty approach 
is used for imposing boundary conditions. The method is exactly same as explained in the analysis of columns 
and tension members. 
Step 7: Solution of Simultaneous Equations 
This step is also same as explained in the analysis of tension bars and columns. 
Step 8: Additional Calculations 

Analysts are interested in finding stresses and forces in the members of the truss. 

Finite Elements for 2‐D Problems 

General Formula for the Stiffness Matrix 
 

Displacements (u, v) in a plane element are interpolated from nodal displacements (ui, vi) using shape functions 
Ni as follows, 

where N is the shape function matrix, u the displacement vector and d the nodal displacement vector. Here we 

have assumed that u depends on the nodal values of u only, and v on nodal values of v only. Most commonly 



27  

employed 2-D elements are linear or quadratic triangles and quadrilaterals. 
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Constant Strain Triangle (CST or T3) 
 

This is the simplest 2-D element, which is also called linear triangular element. 

For this element, we have three nodes at the vertices of the triangle, which are numbered around the element in 

the counter clockwise direction. Each node has two degrees of freedom (can move in the x and y directions). The 

displacements u and v are assumed to be linear functions within the element, that is, 

 

where bi (i = 1, 2, ..., 6) are constants. From these, the strains are found to be, 

which are constant throughout the element. 
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UNIT III 

 
Elasticity Equations 

Elasticity equations are used for solving structural mechanics problems. These equations must be satisfied if an exact solution to a 

structural mechanics problem is to be obtained. The types of elasticity equations are 

1. Strian – Displacement relationship equations 

 

2. Sterss – Strain relationship equation 
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σ – Stress, τ – Shear Stress, E – Young’s Modulus, v – Poisson’s Ratio, e – Strain, γ- Shear Strain. 

3. Equilibrium equations 
 

 
σ – Stress, τ – Shear Stress, B x - Body force at X direction, 

B y - Body force at Y direction, B z - Body force at Z direction. 

 
4. Compatibility equations 

 
There are six independent compatibility equations, one of which is 

 

 

The other five equations are similarly second order relations. 
 Axisymmetric Elements 

Most of the three dimensional problems are symmetry about an axis of rotation. Those types of problems are solved by a special two 

dimensional element called as xisymmetric element. 
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 Axisymmetric Formulation 
 

The displacement vector u is given by 
 

The stress σ is given by 
 

The strain e is given by 

Equation of shape function for Axisymmetric element 
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Shape function, 

 
 Equation of Strain – Displacement Matrix [B] for Axisymmetric element 

 

 
 

 
 Equation of Stress – Strain Matrix [D] for Axisymmetric element 
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 Equation of Stiffness Matrix [K] for Axisymmetric element 
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 Temperature Effects 
 

The thermal force vector is given by 
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 Problem (I set) 1. For the given element, determine the stiffness matrix. Take E=200GPa and υ= 0.25. 2. 
 

 

 
 2. For the figure, determine the element stresses. Take E=2.1x105N/mm2 and υ= 0.25. The co – ordinates are in mm. The nodal 

displacements are u1=0.05mm, w1=0.03mm, u2=0.02mm, w2=0.02mm, u3=0.0mm, w3=0.0mm. 

 

 
 3. A long hollow cylinder of inside diameter 100mm and outside diameter 140mm is subjected to an internal pressure of 4N/mm2. 

By using two elements on the 15mm length, calculate the displacements at the inner radius. 
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 Isoparametric element 
 

Generally it is very difficult to represent the curved boundaries by straight edge elements. A large number of elements may be used to 

obtain reasonable resemblance between original body and the assemblage. In order to overcome this drawback, isoparametric elements 

are used. 

 
 
 

 

 
 

If the number of nodes used for defining the geometry is same as number of nodes used defining the displacements, then it is known 

as isoparametric element. 

 
 Superparametric element 

If the number of nodes used for defining the geometry is more than number of nodes used for defining the displacements, then it is 

known as superparametric element. 
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 Subparametric element 
 

If the number of nodes used for defining the geometry is less than number of nodes used for defining the displacements, then it is 

known as subparametric element. 

 
 

 
 Equation of Shape function for 4 noded rectangular parent element 
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 Equation of Stiffness Matrix for 4 noded isoparametric quadrilateral element 
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 Equation of element force vector 
 

 
N – Shape function, Fx – load or force along x direction, Fy – load or force along y direction. 

 
 Numerical Integration (Gaussian Quadrature) 

 
The Gauss quadrature is one of the numerical integration methods to calculate the definite integrals. In FEA, this Gauss quadrature 

method is mostly preferred. In this method the numerical integration is achieved by the following expression, 
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Table gives gauss points for integration from -1 to 1. 

 
 Problem (I set) 1. Evaluate, by applying 3 point Gaussian quadrature and compare with exact solution. 
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2. Evaluate, using one point and two point Gaussian quadrature. Compare 
with exact solution. 

 
 

3. For the isoparametric quadrilateral element shown in figure, determine the local co –ordinates of the point 

P which has Cartesianco- ordinates (7, 4). 

 
 
 
 
 
 
 
 
 
 
 
 

4. A four noded rectangular element is in figure. Determine (i) Jacobian matrix, (ii) Strain – Displacement 
matrix and (iii) Element 

Stresses. Take E=2x105N/mm2,υ= 0.25, u=[0,0,0.003,0.004,0.006, 0.004,0,0] T, Ɛ= 0, ɳ=0. Assume plane 
stress condition. 
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UNIT IV 
 

One could obtain the global stiffness matrix of a continuous beam from assembling member stiffness matrix of 

individual beam elements. Towards this end, we break the given beam into a number of beam elements. The 

stiffness matrix of each individual beam element can be written very easily. For example, consider a 

continuous beam ABCD as shown in Fig. 1a. The given continuous beam is divided into three beam elements 

as shown in Fig. 1b. It is noticed that, in this case, nodes are located at the supports. Thus each span is treated 

as an individual beam. However sometimes it is required to consider a node between support points. This is 

done whenever the cross sectional area changes suddenly or if it is required to calculate vertical or rotational 

displacements at an intermediate point. Such a division is shown in Fig. 1c. If the axial deformations are 

neglected then each node of the beam will have two degrees of freedom: a vertical displacement 

(corresponding to shear) and a rotation (corresponding to bending moment). In Fig. 1b, numbers enclosed in 

a circle represents beam numbers. The beam ABCD is divided into three beam members. Hence, there are four 

nodes and eight degrees of freedom. The possible displacement degrees of freedom of   the beam are also 

shown in the figure. Let us use lower numbers to denote unknown degrees of freedom (unconstrained degrees 

of freedom) and higher numbers to denote known (constrained) degrees of freedom. Such a method of 

identification is adopted in this course for the ease of imposing boundary conditions directly on the structure 

stiffness matrix. However, one could number sequentially as shown in Fig. 1d. This is preferred while solving 

the problem on a computer. 
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In the above figures, single headed arrows are used to indicate translational and double headed arrows are used 

to indicate rotational degrees of freedom. 

 
Beam Stiffness Matrix: 

Fig. 2 shows a prismatic beam of a constant cross section that is fully restrained at ends in local orthogonal co- 

ordinate system x' y' z'. The beam ends are denoted by nodes j and k. The x' axis coincides with the centroidal 

axis of the member with the positive sense being defined from j to k. Let L be the length of the member, A area 

of cross section of the member and I zz is the moment of inertia about z'axis. 
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Two degrees of freedom (one translation and one rotation) are considered at each end of the member. Hence, 

there are four possible degrees of freedom for this member and hence the resulting stiffness matrix is of the 

order 4 X 4. In this method counterclockwise moments and counterclockwise rotations are taken as positive. 

The positive sense of the translation and rotation are also shown in the figure. Displacements are considered as 

positive in the direction of the co- ordinate axis. The elements of the stiffness matrix indicate the forces 

exerted on the member by the restraints at the ends of the member when unit displacements are imposed at 

each end of the member. Let us calculate the forces developed in the above beam member when unit 

displacement is imposed along each degree of freedom holding all other displacements to zero. Now impose a 

unit displacement along y' axis at j end of the member while holding all other displacements to zero as shown 

in Fig.a. This displacement causes both shear and moment in the beam. The restraint actions are also shown in 

the figure. By definition they are elements of the member stiffness matrix. In particular they form the first 

column of element stiffness matrix. 

In Fig.b, the unit rotation in the positive sense is imposed at j end of the beam while holding all other 

displacements to zero. The restraint actions are shown in the figure. The restraint actions at ends are 

calculated referring to tables given in lesson… 
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In Fig. 3c, unit displacement along y' axis at end k is imposed and corresponding restraint actions are 

calculated. Similarly in Fig.d, unit rotation about z' axis at end k is imposed and corresponding stiffness 

coefficients are calculated. Hence the member stiffness matrix for the beam member is 

The stiffness matrix is symmetrical. The stiffness matrix is partitioned to separate the actions associated with 

two ends of the member. For continuous beam problem, if the supports are unyielding, then only rotational 

degree of freedom shown in Fig. is possible. In such a case the first and the third rows and columns will be 

deleted. The reduced stiffness matrix will be, 

 



55  

 
 
 
 
 
 
 

Instead of imposing unit displacement along y' at j end of the member in Fig.a, apply a displacement u'1 along y' 

at j end of the member as shown in Fig. a, holding all other displacements to zero. Let the restraining forces 

developed be denoted by q11, q21, q31 and q41. 

 
 
 

 
The forces are equal to, 

 
q11 = k11u'1; q21 = k21u'1; q31 = k31u'1; q41 = k41u'1 

 
Now, give displacements u'1, u'2, u'3 and u'4 simultaneously along displacement degrees of freedom 1, 2, 3 and 4 

respectively. Let the restraining forces developed at member ends be q1, q2 , q3 and q4 respectively as shown 

in Fig. b along respective degrees of freedom. Then by the principle of superposition, the force displacement 

relationship can be written as, 



 

 

 
 

Beam (global) Stiffness Matrix: 

The formation of structure (beam) stiffness matrix from its member stiffness matrices is explained with help of 

two span continuous beams shown in Fig. a. Note that no loading is shown on the beam. The orthogonal co- 

 
 
 
 
 
 
 
 
 

ordinate system xyz denotes the global co-ordinate system. 

For the case of continuous beam, the x - and x’ - axes are collinear and other axes ( y and y' , z and z' ) are 

parallel to each other. Hence it is not required to transform member stiffness matrix from local co-ordinate 

system to global coordinate system as done in the case of trusses. For obtaining the global stiffness matrix, first 

assume that all joints are restrained. The node and member numbering for the possible degrees of freedom are 
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shown in Fig b. The continuous beam is divided into two beam members. For this member   there are six 

possible degrees of freedom. Also in the figure, each beam member with its displacement degrees   of freedom 

(in local co ordinate system) is also shown. Since the continuous beam has the same moment of inertia and span, 

the member stiffness matrix of element 1 and 2 are the same. They are, 

 
 

 
 

 
The local and the global degrees of freedom are also indicated on the top and side of the element stiffness 

matrix. This will help us to place the elements of the element stiffness matrix at the appropriate locations of the 

global stiffness matrix. The continuous beam has six degrees of freedom and hence the stiffness matrix is of the 

order6. Let [K] denotes the continuous beam stiffness matrix of order 6X6. From Fig., [K] may be written as, 
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The 4X4 upper left hand section receives contribution from member 1 (AB) and 4X4 lower right hand section of 

global stiffness matrix receives contribution from member 2. The element of the global stiffness matrix 

corresponding to global degrees of freedom 3 and 4 receives element from both members 1 and 2. 

 

FORMATION OF LOAD VECTOR: 
 

Consider a continuous beam ABC as shown inFig. 
 
 

 
 

We have two types of load: member loads and joint loads. Joint loads could be handled very easily as done in 

case of trusses. Note that stiffness matrix of each member was developed for end loading only. Thus it is 

required to replace the member loads by equivalent joint loads. The equivalent joint loads must be evaluated 

such that the displacements produced by them in the beam should be the same as the displacements produced 

by the actual loading on the beam. This is evaluated by invoking the method of superposition. 
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The loading on the beam shown in Fig. (a), is equal to the sum of Fig. (b) and Fig. (c). In Fig. (c), the joints are 

restrained against displacements and fixed end forces are calculated. In Fig. (c) these fixed end actions are 

shown in reverse direction on the actual beam without any load. Since the beam in Fig. (b) is restrained (fixed) 

against any displacement, the displacements produced by the joint loads in Fig. (c) must be equal to the 

displacement produced by the actual beam in Fig. (a). Thus the loads shown in Fig. (c) are the equivalent joint 

loads .Let, p1, p2 , p3 , p4 , p5 and p6 be the equivalent joint loads acting on the continuous beam along 

displacement degrees of freedom 1,2,3,4,5 and 6 respectively as shown in Fig. (b). Thus the global load vector is, 
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SOLUTION OF EQUILIBRIUM EQUATIONS: 

After establishing the global stiffness matrix and load vector of the beam, the load displacement relationship for 

the beam can be written as 

 

 
Where is the global load vector, { P } { u } is displacement vector and is the global stiffness matrix. In the 

above equation some joint displacements are known from support conditions. The above equation may be 

written as 

 
Where {pk} and { uk} denote respectively vector of known forces and known displacements. And {pk} and { uk} 

denote respectively vector of unknown forces and unknown displacements respectively. Now expanding 

equation 

{ pk}  k11{uu}  k12 {uk} 

{ pu}  k 21 {uu}  k 22 {uk } 
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Since uk is known, the unknown jo int displacements can be evaluated. And support reactions are 

evaluated from equation, after evaluating unknown displacement vector. 

Let R1,R3 and R5 be the reactions along the constrained degrees of freedom. Since equivalent joint loads 

are directly applied at the supports, they also need to be considered while calculating the actual 

reactions. Thus, 

 
The reactions may be calculated as follows. The reactions of the beam shown in Fig. a are equal to 

the sum of reactions shown in Fig. b, Fig. c and Fig. d. 
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Member end actions q1, q2, q3 and q4 are calculated as follows. For example consider the first element 1 
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UNIT V 
 
 

Dynamic analysis 
 

Modal analysis - Natural frequency and mode shapes 

 Harmonic analysis - Forced response of system to a sinusoidal forcing 

 Transient analysis - Forced response for non-harmonic loads (impact, 

step or ramp forcing etc.) 

DYNAMIC CONSIDERATIONS 

Static analysis holds when the loads are slowly applied. When the loads are suddenly 

applied, or when the loads are of a variable nature, the mass and acceleration effects come 

into the picture. If a solid body, such as an engineering structure, is deformed elastically 

and suddenly released, it tends to vibrate about its equilibrium position. This periodic 

motion due to the restoring strain energy is called free vibration. 

The number of cycles per unit time is called frequency. 
 

The maximum displacement from the equilibrium position is the amplitude. 
 
 

FORMULATION 

We define the Lagrangean by 
 

L = T -П 
 
 

where T is the kinetic energy and П is the potential energy. 
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Example 
 

Consider the spring-mass system in Fig.. The kinetic and potential energies are given by 
 

 

Using L = T – П, we obtain the equations of motion 
 

which can be written in the form 
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where M is the mass matrix, K is the stiffness matrix, and and x are vectors 
representing accelerations and displacements. 

Solid Body with Distributed Mass 
 

Consider a solid body with distributed mass. The kinetic energy is given by 

 
where ρ is the density (mass per unit volume) of the material and 

 
is the velocity vector of the point at x, with components In the finite element method, we dive 
the body into elements, and in each element, 
we express u in terms of the nodal displacements q, using shape functions N. 

 

 
In dynamic analysis, the elements of q are dependent on time, while N represents (spatial) shape 
functions defined on a master element. The velocity vector is then given by 

 
the kinetic energy Te in element e is 
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where the bracketed expression is the element mass matrix 

This mass matrix is consistent with the shape functions chosen and is called the 
consistent mass matrix. On summing over all the elements, we get 

 
 
 

Using the Lagrangean L = T – П, we obtain the equation of motion: 
 

 
For free vibrations the force F is zero. Thus, 

 

 
For the steady-state conditions, starting from the equilibrium state, we get 

 

where U is the vector of modal amplitudes of vibration and ω (rad/s) is the circular 
frequency (2πf, f = cycles/s or Hz). 

 

 
This is the generalized eigen value problem 

 

 
 

ELEMENT MASS MATRICES 
 

Treating the material density ρ to be constant over the element, we have, 
 



67  

One-dimensional bar element For the bar element 
 

 

 

On carrying out the integration of each term in NTN, we find that 
 

 
Truss element For the truss element 

 

 
 

 
in which ξ is defined from -1 to +1. Then 
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CST element For the plane stress and plane strain conditions for the CST element 
 

 
The element mass matrix is then given by 

 

 

Lumped mass matrices Practicing engineers also use lumped mass techniques, where the total 
element mass in each direction is distributed equally to the nodes of the element, and the masses 
are associated with translational degrees of freedom only. For the truss element, the lumped mass 
approach gives a mass matrix of 

 

 
For the beam element, the lumped element mass matrix is 
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EVALUATION OF EIGENVALUES AND EIGENVECTORS 
 

 
We observe here that K and M are symmetric matrices. Further, K is positive definite for 
properly constrained problems. 
Properties of Eigenvectors 
For a positive definite symmetric stiffness matrix of size n, there are n real eigenvalues and 
corresponding eigenvectors. The eigenvalues may be arranged in ascending order: 

 

 
If U1, U2…Un are the corresponding eigenvectors, we have 

 

 
The eigenvectors possess the property of being orthogonal with respect to both the stiffness 
and mass matrices 

 

The lengths of eigenvectors are generally normalized so that 

The foregoing normalization of the eigenvectors leads to the relation 
 

 
EIGENVALUE – EIGENVECTOR EVALUATION 
The eigenvalue-eigenvector evaluation procedures fall into the following basic categories: 

1. Characteristic polynomial technique 
2. Vector iteration methods 
3. Transformation methods 

Characteristic polynomial 

 
If the eigenvector is to be nontrivial, the required condition is 

  
This represents the characteristic polynomial in λ 


